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Latent space is not identifiable (VAEs, NFs, CNFs)

Given parameterizations  and  
with , an indeterminacy transformation at 

 is a function  s.t.  .

θa = ( fa, PZa
) θb = ( fb, PZb

)
Pθa

= Pθb
(θa, θb) Aa,b : Za → Zb fa ∘ A−1

a,b = fb

Two parameterizations  and  
are equivalent if  and lead to the equivalence 
class . The model is identifiable if 

 is a singleton. (  for shorthand).

θa = ( fa, PZa
) θb = ( fb, PZb

)
Pθa

= Pθb
[θ] = {θ′￼ : Pθ = Pθ′￼}

[θ] Pθ(X) := Pθ

Applied scientists care about the latent space to make scientific discoveries

Scientific discoveries and downstream applications are unreliable

1. Motivation

2. Problem setup

Exploration of the latent space is often relational (based on distances, angles, etc.)

Key observation

IDENTIFIABLE GEOMETRIC RELATIONS  IN THE LATENT SPACE via pullback geometry

OUR SOLUTION

Deep latent variable models and Identifiabilitya

All indeterminacy transformations  of a 
generative model are a.e. equal to  [1].

Aa,b : 𝒵a → 𝒵b
Aa,b(z) = f −1

b ∘ fa(z)

Assumptions. All decoder functions  are: 
A2 injective; A3 have full rank Jacobian;  
A4 have the same image 

f

ℳ ∈ 𝒟

2. Problem setup (cont’d)

b
Pullback metric represents the metric structure of the manifold  wrt. local coordinates 
in latent space  by considering local neighborhoods of a point. 
 
In a local neighborhood of , we can approximate  using Taylor, 

 with  denoting a small perturbation.  
 
Given two small perturbations around , , we can compute the inner product by: 

 

 
where  denotes the pullback metric that at each  assigns a symmetric positive 
definite matrix defining an inner product.

ℳ ∈ 𝒟
𝒵

z ∈ 𝒵 f
f(z + Δz) ≈ f(z) + JzΔz Δz

z Δz1, Δz2
∥f(z + Δz1) − f(z + Δz2)∥2 = ∥f(z) + JzΔz1−f(z) − JzΔz2∥2

= (Δz1 − Δz2)⊤J⊤
z Jz(Δz1 − Δz2)

= (Δz1 − Δz2)⊤g(z)(Δz1 − Δz2)
g(z) z ∈ 𝒵

3. Main results

a

4. Experiments

Injective decoder models (MNIST & CIFAR10)a

Non-injective decoder models (FMNIST & CelebA)b

Pullback metric is identifiable

Theorem 1: Let  and  be equivalent models ( ) with the 
associated pullback metrics  and . Then all the possible indeterminacy transformations are 
isometries. I.e.: 

θa = ( fa, PZa
) θb = ( fb, PZb

) Pθa
= Pθb

ga gb

Aa,b
*ga = gb

This makes lengths of curves, angles, volumes, Ricci curvature tensor, optimal transport, 
geodesics, logarithmic and exponential maps identifiable.

b Euclidian means flat, no matter how we get it

In particular, identifiable distances for downstream tasks

Corollary 1: Let  and  be equivalent models ( ) with the 
associated pullback metrics  and . Pick and , then the geodesic distance 
between the latent codes,  and  is identifiable. I.e.:

θa = ( fa, PZa
) θb = ( fb, PZb

) Pθa
= Pθb

ga gb x1 x2 ∈ ℳ
za

1 = f −1
a (x1) za

2 = f −1
a (x2)

dga
(za

1, za
2) = dgb

(Aa,b(za
1), Aa,b(za

2)) = dgb
(zb

1, zb
2)

where geodesic distance is defined to be:

dga
(za

1, za
2) = inf

γ ∫
1

0
|γ′￼(t) |ga

dt

that is the curve  with the lowest energy satisfying  and .γ ∈ 𝒵a γ(0) = za
1 γ(1) = zb

1

Corollary 2: Let  be a latent space,  a decoder and  a metric on  that is (proportionally) 
Euclidean. If we set , then  can only be identifiable if  is a flat manifold.  

𝒵a fa g𝔼 𝒵a
ga = g𝔼 ga fa(𝒵a) = ℳ

Latent space geometry

Euclidean identifiability through multiple views [4,5] and model restrictions [6] only works 
if the target manifold is assumed flat.

Disregard geometry, focus on parameters, constrain the model, require extra labeled data

Current solutions

Problem

Demonstrate reliable distances in the latent space without model restrictions or extra data 
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An injective decoder/encoder inspired by the -flow architecture using Normalizing Flows [3].ℳ

For each dataset:

For each model:

1. Randomly pick 100 point pairs from the test set 
2. Train 30 models with different initializations

1. Encode the points in the latent space 
2. Measure the Euclidean distance between the points 
3. Measure the geodesic distance between the points

For each point pair:

CV(point pair) =
mean over 30 measurements

std. deviation over 30 measurements

For each distance:
Compute coefficient of variation:

Return coefficients of variation for the Euclidean and geodesic distances for 100 point pairs

Geodesic between two points in 2D latent space 
for MNIST model

Geodesics efficiently parameterized by a natural splines with parameters trained by optimizing 
discretized curve energy using gradient descent. 

Non-injective deep CNN decoder architecture 

Verifiable A3 assumption (full rank Jacobian)

To account for stochasticity in manifold estimation we use an ensemble of decoders to compute 
geodesics wrt. following [2].

Geodesics computation as in (a) above

Separate deep CNN encoder

Theory validated if geodesic distances show lower coefficient of variation 

Histograms of coefficients  of variation for the two datasets. Geodesic distance measure shows a narrower distribution with lower mean. 

(Left): Interpolation between two CelebA datapoints. Top: following the geodesic: bottom: following the 
straight line in the latent space.  

(Right): Histograms of coefficients of variation for the two datasets. Geodesic distance measure shows a 
narrower distribution with lower mean. 

5. Conclusions

Strong theoretical identifiability guarantees the pullback metric: distances, angles, 
volumes, logarithmic and exponential maps, etc.
Does not require extra data, model restrictions or special training procedures (post hoc.).

Fully compatible with domain specific metrics and modern architectures.
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Deep latent variable models learn densities of data  induced by latent variables . 
 
An identifiable model means that we can uniquely determine the latent variables  from data. 
 
Indeterminacy transformations are maps between any pair of latent spaces of equivalent 
models. They are the underlying causes of non-identifiability of our models.

X ∈ 𝒟 Z ∈ 𝒵

Z

Model parameters  define the density of data:  

by a generator (decoder) function   and the distribution of the latent variables 

θ = ( f, PZ) Pθ(X) = ∫ P(X | f(Z))PZdZ
f : 𝒵 → 𝒟 PZ

TL;DR Definitions

*  denotes the pushforward


